If it's not what You are looking for type in the equation solver your own equation and let us solve it.
23x^2-80x-48=0
a = 23; b = -80; c = -48;
Δ = b2-4ac
Δ = -802-4·23·(-48)
Δ = 10816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{10816}=104$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-104}{2*23}=\frac{-24}{46} =-12/23 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+104}{2*23}=\frac{184}{46} =4 $
| y=-3^2+48 | | (-10+5z)(-8z-10)=0 | | 3a+5=a+1 | | C=5h-2h=11 | | x^2-|x|=12 | | 9q-6=3q | | (2y)-2)÷(3y)-11)=2 | | 2y-2=3y-11×2 | | 14-39=1/4(12x+64) | | 14x-39=1/4(12x+64) | | 2z÷3=6 | | x^2+32x+216=0 | | 1/6y-6=-16 | | (3x+4)^2=25 | | (3x+4)(2)=25 | | 10x^2-49x+51=0 | | 1+4/3x=4-2/5x | | a(2+4)2+3=0 | | 4x/3+3/2=2x/3 | | 16a=8a | | 24x+18=21x-48 | | -5x-7=-8 | | 7x-27=10x | | x=- | | 7x-4=68 | | -3(3x-2)-(2x+3)=0 | | -3(3x-2)-(2+3)=0 | | 14x=6x-19 | | 4(x+28)-3(-x+28)=14 | | 5(x+8)+3(-x+6)=-10 | | 3x(x-3)=8x^2-12x | | 5x+75=2x+12 |